今日头条Position

当前位置:主页 > 今日头条 >

咨询电话:
深度解读:深度学习在IoT大数据和流分析中的应用

作者:澳门太阳城赌城  时间:2019-09-25 05:38  人气:

目前流数据分析都是基于数据并行计算或增量处理的框架,尽管这些技术减少了从流数据分析框架返回响应的时间延迟,对于IoT应用的严格时间要求,它们并不是最佳方案。IoT需要在数据源附近的平台(甚至是IoT设备自身)上进行快速流数据分析,以达到实时或近实时性的要求,传统的流数据分析方法则面临着计算、存储以及数据源能量方面的局限和挑战。真实性(Veracity):真实性是指质量,一致性,和数据的可信性,有真实性的数据才能进行准确的分析。这一点对于物联网来说尤其重要,特别是那些群体感知数据。VAE对数据结构的假设并不强,是较为流行的生成模型框架。它很适用于IoT解决方案,因为IoT数据呈现的多样性,以及标记数据的缺失。模型由两个子网络组成:一个生成样例,一个进行假设推理。GAN由两个神经网络组成,一个生成网络,一个判别网络,共同工作来产生合成的、高质量数据。生成器根据数据在训练数据集中的分布生成新数据,判别器学习判别真实数据和生成器生成的假数据。GAN的目标函数是基于极大极小博弈的,一个网络要最大化目标函数,而另一个要最小化目标函数。RBM是一种随机神经网络,由两层组成,一层是包含输入的可见层,一层是含有隐变量的隐藏层。RBM中的限制是指同一层的任意两个神经元互不相连。除此之外,偏置单元与所有的可见层和隐藏层单元都相连。IoT的一大部分应用场景中,输入深度学习的数据是图片或视频。每天,每个人都在用手机的高清摄像头拍摄者图片和视频,除此之外,家居、校园或工厂也在使用智能摄像头。所以,图像识别、分类、目标检测是这类设备的基础应用。随着移动设备的普及,网上购物的人数大大增加了。最近出现了通过视觉搜索技术向产品图像检索的转变。CNN一直用于服装和时尚市场的视觉搜索,帮助你在网店中找到在电影中看到的或在街上看到的商品。IoT结合深度学习可以搭建视觉购物辅助系统,包括智能眼镜、手套和购物车,目的是帮助视障人士购物。此外,智能购物车的开发可以实现实时自结账的功能。深度学习在语音和视频方面的成功为IoT的基础服务打下了良好的基础,如何将它们的模型和方法部署在资源受限的设备上成了IoT领域的一个重要研究方向。到目前为止,深度学习方法难以应用于IoT和资源受限设备,因为它们需要大量的资源来运行,如处理器、电池能量和存储器。幸运的是,近期研究显示,深度神经网络的许多参数是冗余的,有时也不需要大量的隐层。有效的去除这些参数或层可以减少网络的复杂度,同时对输出不会有太大的影响。在资源受限设备上应用深度神经网络的方法之一是网络压缩,将密集的网络转化为一个稀疏的网络。主要局限性在于,它不足以支持所有类型的网络。它只适用于具有这种稀疏性的特定网络模型。另外,修剪多余的和不重要的参数或神经元,是在资源受限的设备上运行深度神经网络的另一个重要途径。近似计算是实现在IoT设备上部署机器学习工具的另一种方法,并有助于主机设备的节能。在许多IoT应用中,机器学习的输出不一定是精确的,而是在可接受的范围内提供所需的质量。实际上,将深度学习模型与近似计算相结合,可以为资源受限设备提供更有效的深度学习模型。除了之前所提方法,开发具有强深度学习能力的小尺寸处理器也是研究热点。微处理器的设计尺寸在一立方毫米的范围内,可以用电池驱动,进行深度神经网络分析只消耗大约300毫瓦。通过这种技术,许多对时间要求较高的IoT应用程序可以在设备上执行决策,而不是将数据发送到高性能计算机,等待它们的响应。最近,人们提出了雾计算,使计算和分析更接近终端用户和设备,而不是仅仅停留在云计算上。实验表明,通过对雾计算节点进行数据分析,可以避免向遥远的云节点传输大量原始数据,从而提高整体性能。还可以在一定程度上进行实时分析,因为雾计算在本地,靠近数据源。尽管在雾计算架构上引入了深度学习分析,云计算仍然是许多无法在雾计算中处理的IoT应用的唯一可行的解决方案。因此,设计的可扩展的和高性能的云中心的DNN模型和算法,对大量的IoT数据进行分析,仍然是一个重要的研究领域。许多深度学习方法需要对数据进行预处理以产生更好的结果,对于IoT应用,预处理会更复杂,因为系统处理的是来自不同数据源的数据,可能有多种格式和分布,而且还可能有数据丢失。确保数据安全和隐私是许多IoT应用的一个主要问题,因为IoT大数据将通过互联网进行分析,因此世界各地都有可能看得到。此外,深度学习训练模型也容易受到恶意攻击,如虚假数据注入或对抗性样本输入,其中IoT系统的许多功能或非功能性要求可能无法得到保证。

如果喜欢澳门太阳城赌城|澳门太阳城赌城官网|欢迎您,请告诉您的朋友 Power by DedeCms   地址/Add:   电话/Tel:

技术支持:AB模板网

在线咨询
提交订单
索要报价
扫一扫

扫一扫
进入手机网站

服务热线

返回顶部